MATLAB¨ç¼Æ¬d¸ß¤â¥U ( ²Åé ¦r) |
§@ªÌ¡G¥e§g | Ãþ§O¡G1. -> ¤uµ{ø¹Ï»P¤uµ{pºâ -> Matlab |
ĶªÌ¡G |
¥Xª©ªÀ¡G¾÷±ñ¤u·~¥Xª©ªÀ | 3dWoo®Ñ¸¹¡G 28430 ¸ß°Ý®ÑÄy½Ð»¡¥X¦¹®Ñ¸¹¡I¡i¯Ê®Ñ¡j ¡i¤£±µ¨üqÁÊ¡j |
¥Xª©¤é¡G12/7/2010 |
¶¼Æ¡G466 |
¥úºÐ¼Æ¡G1 (§tµøÀW±Ð¾Ç) |
|
¯¸ªø±ÀÂË¡G  |
¦L¨ê¡G¶Â¥Õ¦L¨ê | »y¨t¡G ( ²Åé ª© ) |
|
¡i¤£±µ¨üqÁÊ¡j |
ISBN¡G9787111323693 |
§@ªÌ§Ç¡@|¡@ĶªÌ§Ç¡@|¡@«e¨¥¡@|¡@¤º®e²¤¶¡@|¡@¥Ø¿ý¡@|¡@§Ç |
(²Åé®Ñ¤W©Òz¤§¤U¸ü³sµ²¯Ó®É¶O¥\, ®¤¤£¾A¥Î¦b¥xÆW, YŪªÌ»Ýn½Ð¦Û¦æ¹Á¸Õ, ®¤¤£«OÃÒ) |
§@ªÌ§Ç¡G |
ĶªÌ§Ç¡G |
«e¨¥¡G¥»®Ñ¥i§@¬°Matlab¦U¼h¦¸¨Ï¥ÎªÌªº°Ñ¦Ò¥Î®Ñ¡A¤×¨ä¾A¦X§@¬°¬ÛÃö±M·~ªº¾Ç¥Í¥H¤Î±Ð®v¡B¼s¤j¬ì¬ã¤u§@ªÌ¡B¤uµ{§Þ³N¤Hûªº®×ÀY¬d¸ß¤â¥U |
¤º®e²¤¶¡GMatlab¬O·í«e³Ì¬y¦æªº¤j«¬¼Æ¾Ç¤u¨ã³nÅ餧¤@¡A¯à°÷§¹¦¨µ´¤j³¡¤À¬ì¾Ç¹Bºâ¡C¥»®Ñ±q¹ê¥Î¨¤«×¥Xµo¡A¨t²Î¤¶²ÐMatlab¦UºØ¨ç¼Æ¡A¥]¬A¡Gø¹Ï¡B¯x°}¹Bºâ¡B´¡ÈÀÀ¦X¡B·L¿n¤À¡B²Å¸¹¹Bºâ¡B·§²v²Îp¡B Simulink¼ÒÀÀ¡B¹Ï§Î¤Æ¨Ï¥ÎªÌ¤¶±¡B¤pªi¤ÀªR¡B¯«¸gºô¸ô¡B¿ò¶Çºtºâªk¡B«H¸¹³B²zµ¥¡C¬°«K©óŪªÌ¹ïMatlab¨ç¼Æªº²z¸Ñ¡A¥»®Ñ¦CÁ|¤F¤j¶qªº¨ç¼Æ¹ê¨Ò¡A¨Ã´£¨Ñ¾Þ§@¿ý¼v¨ÑŪªÌ°Ñ¦Ò¡A¥i·¥¤j¦a°§C¾Ç²ßÃø«×¡C ¥»®Ñ¥i§@¬°Matlab¦U¼h¦¸¨Ï¥ÎªÌªº°Ñ¦Ò¥Î®Ñ¡A¤×¨ä¾A¦X§@¬°¬ÛÃö±M·~ªº¾Ç¥Í¥H¤Î±Ð®v¡B¼s¤j¬ì¬ã¤u§@ªÌ¡B¤uµ{§Þ³N¤Hûªº®×ÀY¬d¸ß¤â¥U |
¥Ø¿ý¡G«e¨¥ ²Ä1³¹ matlab±`¥Î¾Þ§@ 1 1.1 ³q¥Î©R¥O 1 1.1.1 path¡X¡XÅã¥Ü·j¯Á¸ô®| 1 1.1.2 addpath¡X¡X¼W¥[·j¯Á¸ô®|2 1.1.3 rmpath¡X¡X?°£·j¯Á¸ô®| 3 1.1.4 doc¡X¡XŪ¤J¶W¤å¥»¤å¥ó 3 1.1.5 help¡X¡X¦b?¦¡À°§U 4 1.1.6 type¡X¡XÅã¥Ü¤å¥ó?®e 4 1.1.7 what¡X¡X¦C¥X·í«e¥Ø?¤å¥ó 6 1.1.8 clear¡X¡X²M°£ matlab¤u§@ªÅ¶¡¤¤ªº¹ï¶H 6 1.1.9 disp¡X¡XÅã¥Ü¤å¥»©Î¯x°}6 1.1.10 length¡X¡Xpºâ¦V¶q©Î¯x°}ªø«× 7 1.1.11 size¡X¡Xpºâ¼Æ²Õ©Î¯x°}ªººû¼Æ 7 1.1.12 who/whos¡X¡X¦C¥X·í«e?¦s¤¤ªºÅܶq 8 1.2 ¼Æ¾Ú¿é¤J¿é¥X¡]i/o¡^9 1.2.1 input¡X¡X¼Æ¾Ú¿é¤J 9 1.2.2 keyboard¡X¡X½Õ¥ÎÁä½L9 1.2.3 menu¡X¡X?¥Íµæ³æ 9 1.2.4 pause¡X¡X¼È®É°±¤î°õ¦æ 10
.1.2.5 format¡X¡X±±¨î¿é¥X¡BÅã¥Ü®æ¦¡ 10 1.2.6 save¡X¡X«O¦s¤u¥óªÅ¶¡Åܶq¨ìºÏ½L 11 1.2.7 load¡X¡X±q¤å¥ó¤¤½Õ¤JÅܶq¨ì¤u§@ªÅ¶¡11 1.2.8 fopen¡X¡X¥´¶}¤å¥ó©ÎÀò±o¥´¶}¤å¥ó«H®§ 11 1.2.9 fcolse¡X¡XÃö³¬¤å¥ó 12 1.2.10 fread¡X¡X±q¤å¥ó¤¤Åª¤J¤G¶i¨î¼Æ¾Ú 13 1.2.11 fwrite¡X¡X¦V¤å¥ó¤¤¼g¤J¤G¶i¨î¼Æ¾Ú 13 1.2.12 fscanf¡X¡X±q¤å¥ó¤¤Åª¤J®æ¦¡¤Æ¼Æ¾Ú13 1.2.13 fprintf¡X¡X¦V¤å¥ó¤¤¼g¤J®æ¦¡¤Æ¼Æ¾Ú 14 1.2.14 fgets¡X¡X«ö¦æÅª¨ú¤å¥ó?®e¡]¥]¬A¦æµ²§ô²Å¡^14 1.2.15 fgetl¡X¡X«ö¦æÅª¨ú¤å¥ó?®e¡]¤£¥]¬A¦æµ²§ô²Å¡^ 15 1.2.16 ferror¡X¡X¬d¸ß matlabÃö¤_¤å¥ó¿é¤J¡B¿é¥X¾Þ§@ªº¿ù»~ 15 1.2.17 feof¡X¡X´ú¸Õ¤å¥óµ²§À 15 1.2.18 fseek¡X¡X³]¸m¤å¥ó¦ì¸m«ü¥Ü¾¹ 15 1.2.19 ftell¡X¡XÀò¨ú¤å¥ó«ü¥Ü¾¹¦ì¸m 16 1.2.20 frewind¡X¡X˦^¨ì¤å¥ó¶}ÀY 16 1.2.21 sprintf¡X¡X¼g¤@Ӯ榡¤Æ¼Æ¾Ú¨ì¦r²Å¦ê 16 1.2.22 sscanf¡X¡X¦b³W©w®æ¦¡±±¨î¤UŪ¤J¦r²Å¦ê 17 1.2.23 wklread¡X¡XŪ¤J lotus 123¼Æ¾Úªí¤å¥ó¡]wk1¡^ªº¼Æ¾Ú17 1.2.24 wklwrite¡X¡X±N¯x°}?®e¼g¤J lotus 123¼Æ¾Úªí¤å¥ó¡]wk1¡^¤¤ 18 1.2.25 csvread¡X¡XŪ¤J¥Î³r¸¹¤À¹j¼ÆÈªº¤å¥ó 18 1.2.26 csvwrite¡X¡X±N¯x°}¼g¤J³r¸¹¤À¹j¼ÆÈªº¤å¥ó19 1.2.27 dlmread¡X¡XŪ¤J ascii©w¬É¤å¥ó19 1.2.28 dlmwrite¡X¡X±N¯x°}?®e¼g¤J ascii©w¬É¤å¥ó 19 1.2.29 imread¡X¡XŪ¤J¹Ï¹³¤å¥ó 19 1.2.30 imwrite¡X¡X±N¹Ï¹³¼Æ¾Ú¼g¤J¹Ï¹³¤å¥ó¤¤ 20 1.2.31 imfinfo¡X¡Xªð¦^¹Ï¹³¤å¥ó«H®§ 20 1.2.32 auread¡X¡XŪ¤JÁnµ¤å¥ó¡].au¡^ 20 1.2.33 auwrite¡X¡X¦V¤å¥ó¡].au¡^¼g¤JÁnµ¼Æ¾Ú 21 1.2.34 wavread¡X¡XŪ¤JÁnµ¤å¥ó¡].wav¡^ 21 1.2.35 wavwrite¡X¡X¦V¤å¥ó¡].wav¡^¼g¤JÁnµ¼Æ¾Ú 21 1.3 ø¹Ï»P¹Ï§Î³B²z 22 1.3.1 ¤Gºû¹Ï§Îø¨î 22 1.3.2 ¤Tºû¹Ï§Îø¨î 43 1.3.3 ¹Ï§Î¹Ï¹³»P°Êµe³B²z 54 1.4 ±`¥Î¼Æ¾Ç¨ç¼Æ 62 1.4.1 sin/asin¡X¡X¥¿©¶»P¤Ï¥¿©¶¨ç¼Æ 62 1.4.2 sinh/asinh¡X¡XÂù¦±¥¿©¶»P¤ÏÂù¦±¥¿©¶ 63 1.4.3 cos/acos¡X¡X¾l©¶»P¤Ï¾l©¶¨ç¼Æ 63 1.4.4 cosh/acosh¡X¡XÂù¦±¾l©¶»P¤ÏÂù¦±¾l©¶¨ç¼Æ63 1.4.5 tan/atan¡X¡X¥¿¤Á¨ç¼Æ»P¤Ï¥¿¤Á¨ç¼Æ63 1.4.6 tanh/atanh¡X¡XÂù¦±¥¿¤Á¨ç¼Æ»P¤ÏÂù¦±¥¿¤Á¨ç¼Æ 64 1.4.7 cot/acot¡X¡X¾l¤Á¨ç¼Æ»P¤Ï¾l¤Á¨ç¼Æ64 1.4.8 coth/acoth¡X¡XÂù¦±¾l¤Á¨ç¼Æ»P¤ÏÂù¦±¾l¤Á¨ç¼Æ64 1.4.9 sec/asec¡X¡X¥¿³Î¨ç¼Æ»P¤Ï¥¿³Î¨ç¼Æ 64 1.4.10 sech/asech¡X¡XÂù¦±¥¿³Î¨ç¼Æ»P¤ÏÂù¦±¥¿³Î¨ç¼Æ 64 1.4.11 csc/acsc¡X¡X¾l³Î¨ç¼Æ»PÂù¦±¾l³Î¨ç¼Æ 65 1.4.12 csch/acsch¡X¡XÂù¦±¾l³Î¨ç¼Æ»P¤ÏÂù¦±¾l³Î¨ç¼Æ 65 1.4.13 atan2¡X¡X¥|¶Hªº¤Ï¥¿¤Á¨ç¼Æ 65 1.4.14 abs¡X¡X¼ÆÈªº?¹ïÈ»P´_¼Æªº´TÈ 65 1.4.15 exp¡X¡X¥H e¬°©³ªº«ü¼Æ¨ç¼Æ 66 1.4.16 expm¡X¡X¨D¥H e¬°©³ªº¯x°}«ü¼Æ¨ç¼Æ66 1.4.17 log¡X¡X¨D¦ÛµM¹ï¼Æ 66 1.4.18 log10¡X¡X¨D¥H 10¬°©³ªº¹ï¼Æ 66 1.4.19 sort¡X¡X±Æ§Ç¨ç¼Æ 67 1.4.20 fix¡X¡X¦V¹s¤è¦V¨ú¾ã 67 1.4.21 round¡X¡X´Â³Ìªñªº¤è¦V¨ú¾ã 68 1.4.22 floor¡X¡X´ÂtµL½a¤j¤è¦V¨ú¾ã 68 1.4.23 ceil¡X¡X´Â¥¿µL½a¤j¤è¦V¨ú¾ã 68 1.4.24 rem¡X¡X¨D¾l¼Æ 69 1.4.25 real¡X¡X¨D´_¼Æªº¹ê¼Æ³¡¤À 69 1.4.26 imag¨D´_¼Æªº?¼Æ³¡¤À 69 1.4.27 angle¡X¡X¨D´_¼Æ¬Û¨¤70 1.4.28 conj¡X¡X´_¼Æªº¦@³mÈ70 1.4.29 complex¡X¡X³Ð«Ø´_¼Æ 70 1.4.30 mod¡X¡X¨D¼Ò¼Æ 70 1.4.31 nchoosek¡X¡X¤G¶µ¦¡¨t¼Æ©Î©Ò¦³²Õ¦X¼Æ 71 1.4.32 rand¡X¡X¥Í¦¨§¡?¤À¥¬¯x°} 72 1.4.33 randn¡X¡X¥Í¦¨ªA±q¥¿ºA¤À¥¬¯x°} 72 ²Ä2³¹¯x°}¹Bºâ 2.1 ¯x°}°ò¥»¹Bºâ 74 2.1.1 ¯x°}¥N¼Æ¹Bºâ 74 2.1.2 ¯x°}ÅÞ¿è¹Bºâ 80 2.1.3 ¯x°}¤ñ¸û¹Bºâ 81 2.1.4 norm¡X¡Xpºâ¯x°}©M¦V¶qªº½d¼Æ 82 2.1.5 rank¡X¡Xpºâ¯x°}ªº¯´ 83 2.1.6 det¡X¡Xpºâ¯x°}¦æ¦C¦¡È83 2.1.7 trace¡X¡Xpºâ¯x°}ªº? 83 2.1.8 eig¡X¡Xpºâ¯x°}ªº¯S©ºÈ¡B¯S©º¦V¶q84 2.1.9 poly¡X¡Xpºâ¯x°}ªº¯S©º¦h¶µ¦¡ 85 2.1.10 expm¡X¡X¯x°}ªº«ü¼Æ¨ç¼Æ85 2.1.11 logm¡X¡X¯x°}ªº¹ï¼Æ¨ç¼Æ 86 2.1.12 chol¡X¡Xcholesky¤À¸Ñ 86 2.1.13 lu¡X¡Xlu¤À¸Ñ87 2.1.14 inv¡X¡Xpºâ¯x°}ªº°f 87 2.1.15 pinv¡X¡Xpºâ¯x°}ªº?°f¯x°} 88 2.1.16 svd¡X¡X©_ÉÝȤÀ¸Ñ 89 2.1.17 sqrtm¡X¡Xpºâ¯x°}ªº¥¤è®Ú 89 2.1.18 funm¡X¡X¯x°}ªº°ò¥»¨ç¼Æ¹Bºâ 90 2.1.19 dot¡X¡X¦V¶q©Î¯x°}ªº¼¿n 90 2.1.20 cross¡X¡X¦V¶q©Î¯x°}ªº¤e¼ 91 2.1.21 ¦V¶qªº²V¦X¿n¹Bºâ 91 2.1.22 conv¡X¡X¦V¶qªº¨÷¿n©M¦h¶µ¦¡¼ªk 92 2.1.23 deconv¡X¡X¤ÏÁ·¿n¡]¸Ñ¨÷¡^©M¦h¶µ¦¡°£ªk¹Bºâ92 2.1.24 kron¡X¡X±i¶q¿n 93 2.1.25 intersect¡X¡X¨D¨âÓ¶°¦Xªº¥æ¶° 93 2.1.26 ismember¡X¡XÀË´ú¶°¦X¤¤ªº¤¸¯À 94 2.1.27 setdiff¡X¡X¨D¨â¶°¦Xªº®t 95 2.1.28 setxor¡X¡X¨D¨âÓ¶°¦X¥æ¶°ªº«D¡]ÉݩΡ^ 95 2.1.29 union¡X¡X¨D¨â¶°¦Xªº¦}¶° 96 2.1.30 unique¡X¡X¨ú¶°¦Xªº³æÈ¤¸¯À 97 2.1.31 cond¡X¡X¨D¯x°}ªº±ø¥ó¼Æ98 2.1.32condest¡X¡X1-½d¼Æªº±ø¥ó¼Æ¦ôp99 2.1.33 normest¡X¡X2-½d¼Æªº±ø¥ó¼Æ¦ôp 99 2.1.34 rcond¡X¡X¯x°}¥i°fªº±ø¥ó¼Æ¦ôÈ99 2.1.35 condeig¡X¡X¯S©ºÈªº±ø¥ó¼Æ100 2.1.36 diag¡X¡X´£¨ú¯x°}¹ï¨¤?¤¸¯À100 2.1.37 tril¡X¡X¤U¤T¨¤°}ªº©â¨ú101 2.1.38 triu¡X¡X¤W¤T¨¤°}ªº©â¨ú101 2.1.39 reshape¡X¡X¯x°}Åܺû102 2.1.40 repmat¡X¡X¯x°}ªº´_¨î»P¥¾Q102 2.1.41 rat¡X¡X¥Î¦³²z¼Æ§Î¦¡ªí¥Ü¯x°}103 2.1.42 rem¡X¡X¯x°}ªº¾l¼Æ104 2.143 sym¡X¡XÂà?¯x°}¼ÆÈ¬°¤À¼Æ©Î²Å¸¹104 2.1.44 factor¡X¡X²Å¸¹¯x°}ªº¦]¦¡¤À¸Ñ104 2.1.45 expand¡X¡X²Å¸¹¯x°}ªº®i¶}105 2.1.46 numel¡X¡X½T©w¯x°}¤¸¯ÀÓ¼Æ105 2.1.47 cdf2rdf¡X¡X´_¹ï¨¤¯x°}Âà¤Æ¹ê¹ï¨¤¯x°}105 2.1.48 orth¡X¡X±N¯x°}¥¿¥æ³W½d¤Æ106 2.1.49 rref©Îrrefmovie¡X¡Xpºâ¦æ¶¥±è¯x°}¤Î¦V¶q²Õªº°ò106 2.1.50 qr¡X¡Xqr¤À¸Ñ107 2.1.51 qrdelete¡X¡X¹ï¯x°}?°£¦C/¦æ«áqr¤À¸Ñ109 2.1.52 qinsert¡X¡X¹ï¯x°}²K¥[¦C/¦æ«áqr¤À¸Ñ110 2.1.53 schur¡X¡Xschur¤À¸Ñ111 2.1.54 qz¡X¡X¯S©ºÈ°ÝÃDªº¤À¸Ñ111 2.1.55 hess¡X¡X®ü´Ë¬f®æ¤À¸Ñ113 2.1.56 gsvd¡X¡X¼s¸q©_ÉÝȤÀ¸Ñ113 2.1.57 rsf2csf¡X¡X¹êschur¦V´_schurÂà¤Æ115 2.1.58 dmperm¡X¡Xdulmage¡Vmendelsohn¤À¸Ñ115 2.1.59 nnz¡X¡X²Îp¯x°}¤¤«D¹s¤¸¯ÀªºÓ¼Æ116 2.1.60 nonzeros¡X¡X±N¯x°}¤¤«D¹s¤¸¯Àºc¦¨¦C¦V¶q116 2.1.61 nzmax¡X¡Xpºâ¯x°}«D¹s¤¸¯À¤À°tªº¦sÀxªÅ¶¡¼Æ117 2.2 ±`¥Î¯x°}¥Í¦¨117 2.2.1 zeros¡X¡X¥Í¦¨¹s¯x°}118 2.2.2 eye¡X¡X¥Í¦¨³æ¦ì¯x°}118 2.2.3 cat¡X¡X³Ð«Ø¦hºû¼Æ²Õ119 2.2.4 ones¡X¡X¥Í¦¨¥þ1¯x°}119 2.2.5 hankel¡X¡X¥Í¦¨hankel¯x°}120 2.2.6 magic¡X¡X¥Í¦¨Å]¤è°}121 2.2.7 randperm¡X¡X¥Í¦¨ÀH¾÷¾ã¼Æ±Æ¦C121 2.2.8 hilb¡X¡X¥Í¦¨§Æº¸§B¯S¯x°}121 2.2.9 invhilb¡X¡X¥Í¦¨°f§Æº¸§B¯S¯x°}122 2.2.10 pascal¡X¡X¥Í¦¨pascal¯x°}122 2.2.11 toeplitz¡X¡X¥Í¦¨¦«´¶§Q?¯x°}122 2.2.12 compan¡X¡X¥Í¦¨¤Í¯x°}123 2.2.13 wilkinson¡X¡X¥Í¦¨wilkinson¯S©ºÈ´ú¸Õ¯x°}123 2.2.14 vander¡X¡X¥Í¦¨vandermonde¯x°}124 2.2.15 rand¡X¡X¥Í¦¨§¡?¤À¥¬ÀH¾÷¯x°}124 2.2.16 randn¡X¡X¥Í¦¨¥¿ºA¤À¥¬ÀH¾÷¯x°}124 2.2.17 linspace¡X¡X¥Í¦¨?©Êµ¥¤À¦V¶q125 2.2.18 logspace¡X¡X¥Í¦¨¹ï¼Æµ¥¤À¦V¶q125 2.2.19 blkdiag¡X¡X¥Í¦¨«ü©w¹ï¨¤?¤¸¯Àªº¯x°}126 2.2.20 diag¡X¡X¥Í¦¨¹ï¨¤¯x°}126 2.2.21 spaugment¡X¡X¥Í¦¨³Ì¤p¤G¼¼W¼s¯x°}127 2.3 ¯x°}¤èµ{¨D¸Ñ127 2.3.1 inv©Mrref¡X¡X¨D¸Ñ¨ã¦³°ß¤@¸Ñ¯x°}¤èµ{²Õ127 2.3.2 null©Mpinv¡X¡X¨D¸Ñ¨ã¦³µL½a¸Ñªº¯x°}¤èµ{²Õªº°ò¦¸Ñ¨t©M¯S¸Ñ128 2.3.3 pinv¡X¡X§Q¥Îmoore-penrose¼s¸q°f¨DµL¸Ñ¤èµ{ªºªñ¦ü³Ì¤p¤G¼¸Ñ129 2.3.4 lyap¡X¡X³sÄòlyapunov¤èµ{©Msylvester¤èµ{(¼s¸qlyapunov¤èµ{)¨D¸Ñ129 2.3.5 dlyap¡X¡XÂ÷´²lyapunov¤èµ{130 2.3.6 are¡X¡Xriccati¤èµ{¨D¸Ñ130 2.3.7 §Q¥Îlu¤À¸Ñ¨D¤èµ{²Õªº¸Ñ131 2.3.8 §Q¥Îqr¤À¸Ñ¨D¤èµ{²Õªº¸Ñ132 2.3.9 symmlq¡X¡Xlq¸Ñªk¸Ñ?©Ê¤èµ{²Õ133 2.3.10 bicg¡X¡XÂù¦@³m±è«×ªk¸Ñ?©Ê¤èµ{²Õ134 2.3.11 bicgstab¡X¡XéwÂù¦@³m±è«×ªk¸Ñ¤èµ{²Õ135 2.3.12 cgs ¡X¡X´_¦@³m±è«×¥¤èªk¸Ñ¤èµ{²Õ136 2.3.13 lsqr¡X¡X¦@³m±è«×ªkªºlsqrªk¨D¸Ñ¤èµ{²Õ137 2.3.14 gmres¡X¡X¼s¸q³Ì¤p´Ý®tªk¸Ñ¤èµ{²Õ138 2.3.15 minres¡X¡X³Ì¤p´Ý®tªk¸Ñ¤èµ{²Õ138 2.3.16 pcg¡X¡X¹w³B²z¦@³m±è«×ªk139 2.3.17 qmr¡X¡Xã³Ì¤p´Ý®tªk¸Ñ¤èµ{²Õ140 2.4 µ}²¨¯x°}§Þ³N141 2.4.1 sparse¡X¡X¥Í¦¨µ}²¨¯x°}141 2.4.2 full¡X¡X±Nµ}²¨¯x°}Âà¤Æ¬°º¡¯x°}142 2.4.3 spdiags¡X¡X¥Í¦¨±aª¬¡]¹ï¨¤¡^µ}²¨¯x°}142 2.4.4 speye¡X¡X¥Í¦¨³æ¦ìµ}²¨¯x°}143 2.4.5 sprand¡X¡X¥Í¦¨§¡?¤À¥¬ÀH¾÷µ}²¨¯x°}144 2.4.6 sprandn¡X¡X¥Í¦¨¥¿ºA¤À¥¬ÀH¾÷µ}²¨¯x°}144 2.4.7 sprandsym¡X¡X¥Í¦¨ÀH¾÷¹ïºÙµ}²¨¯x°}145 2.4.8 find¡X¡Xµ}²¨¯x°}«D¹s¤¸¯Àªº¯Á¤Þ146 2.4.9 spconvert¡X¡X±N¥~³¡¼Æ¾ÚÂà¤Æ¬°µ}²¨¯x°}147 2.4.10 spfun¡X¡X°w¹ïµ}²¨¯x°}¤¤«D¹s¤¸¯ÀÀ³¥Î¨ç¼Æ147 2.4.11 spy¡X¡Xø¨îµ}²¨¯x°}«D¹s¤¸¯Àªº¤À¥¬¹Ï148 2.4.12 colmmd¡X¡Xµ}²¨¯x°}«D¹s¤¸¯À¦C³Ì¤p«×±Æ§Ç149 2.4.13 colperm¡X¡Xµ}²¨¯x°}«D¹s¤¸¯Àªº¦CÅÜ?150 2.4.14 luinc¡X¡Xµ}²¨¯x°}ªº¤£§¹¥þlu¤À¸Ñ150 2.4.15 cholinc¡X¡Xµ}²¨¯x°}ªº¤£§¹¥þcholesky¤À¸Ñ151 2.4.16 eigs¡X¡Xµ}²¨¯x°}ªº¯S©ºÈ¤À¸Ñ152 ²Ä3³¹ ´¡È»PÀÀ¦X154 3.1 interp1¡X¡X¤@ºû´¡È154 3.2 interp2¡X¡X¤Gºû´¡È156 3.3 interp3¡X¡X¤Tºû´¡È158 3.4 interpn¡X¡Xnºû´¡È159 3.5 interp1q¡X¡X§Ö³t¤@ºû´¡È160 3.6 interpft¡X¡X¤@ºû³Å¥ß¸´¡È160 3.7 griddata¡X¡X¥ô·N¤À¥¬ÂI¼Æ¾Úªº¤Gºû´¡È160 3.8 griddata3¡X¡X¥ô·N¤À¥¬ÂI¼Æ¾Úªº¤Tºû´¡È162 3.9 griddatan¡X¡X¥ô·N¤À¥¬ÂI¼Æ¾Úªºnºû´¡È162 3.10 meshgrid¡X¡X¤Gºû¡B¤Tºûºô®æ¼Æ¾Ú¥Í¦¨163 3.11 ndgrid¡X¡Xnºûºô®æ¼Æ¾Ú¥Í¦¨164 3.12 mkpp¡X¡X³Ð«Ø¤@Ó¤À¬q¦h¶µ¦¡165 3.13 pchip¡X¡X¤À¬q¤T¦¸hermite´¡È¦h¶µ¦¡165 3.14 ppval¡X¡X¨D¤À¬q¦h¶µ¦¡ªºÈ165 3.15 unmkpp¡X¡X¤À¬q¦h¶µ¦¡²Ó¸`165 3.16 spline¡X¡X¤T¦¸?±ø¼Æ¾Ú´¡È166 3.17 csapi¡X¡X«Ø¥ß¤À¬q¤T¦¸?±ø´¡Èªº¹ï¶H¼Ò«¬167 3.18 fnplt¡X¡X?±ø¼Ò«¬ªº¹Ï§Îø¨î¨ç¼Æ168 3.19 spapi¡X¡X«Ø¥ßb?±ø´¡Èªº¹ï¶H¼Ò«¬168 3.20 polyfit¡X¡X¤@ºû¼Æ¾Úªº¦h¶µ¦¡ÀÀ¦X169 3.21 lsqcurvefit¡X¡X§Q¥Î³Ì¤p¤G¼ªkªº¦±?°Ñ¼ÆÀÀ¦X170 3.22 table1¡X¡X¤@ºû¬dªí¨ç¼Æ171 3.23 table2¡X¡X¤Gºû¬dªí¨ç¼Æ172 ²Ä4³¹ ¯Å¼Æ»P·L¿n¤À173 4.1 ¯Å¼Æ173 4.1.1 ®õ°Ç¯Å¼Æ173 4.1.2 symsum¡X¡X¯Å¼Æ¨D©M175 4.2 ·L¤À.176 4.2.1 limit¡X¡X¨D·¥176 4.2.2 diff¡X¡X²Å¸¹¨ç¼Æªº¾É¼Æ176 4.2.3 polyder¡Ðpºâ¨ç¼Æ¦h¶µ¦¡ªº¾É¼Æ177 4.2.4 fnder¡X¡X°ò¤_?±ø´¡Èªº¼ÆÈ·L¤À¨D¸Ñ¨ç¼Æ178 4.2.5 jacobian¡X¡Xjacobi¯x°}179 4.2.6 gradient¡X¡X¨D¼ÆÈ±è«×179 4.3 ¿n¤À.180 4.3.1 int¡X¡X¸ÑªRpºâ¨ç¼Æ¿n¤À180 4.3.2 fnint¡X¡X°ò¤_?±ø¼Ò«¬ªº¼ÆÈ¿n¤À181 4.3.3 trapz¡X¡X¥Î±è§Îªk¶i¦æ¼ÆÈ¿n¤À181 4.3.4 quad¡X¡X¤@¤¸¨ç¼Æ¼ÆÈ©w¿n¤À¡]¦Û¾AÀ³simpleson¿n¤Àªk¡^182 4.3.5 quad1¡X¡X¤@¤¸¨ç¼Æ¼ÆÈ©w¿n¤À¡]¦Û¾AÀ³lobbato¿n¤Àªk¡^182 4.3.6 dblquad¡X¡X¯x§Î°Ï°ì¤W¤G«¿n¤Àªº¼ÆÈpºâ183 4.3.7 quad2dggen¡X¡X¥ô·N°Ï°ì¤W¤G«¿n¤Àªº¼ÆÈpºâ183 4.3.8 triplequad¡X¡Xªø¤èÅé°Ï°ì¤T«¿n¤Àªº¼ÆÈpºâ184 4.4 ·L¤À¤èµ{185 4.4.1 ±`·L¤À¤èµ{185 4.4.2 ©µ¿ð·L¤À¤èµ{189 4.4.3 ÃäȰÝÃD191 4.4.4 °¾·L¤À¤èµ{192 ²Ä5³¹ ²Å¸¹¹Bºâ196 5.1 ²Å¸¹ªí¹F¦¡ªº¹Bºâ196 5.1.1 sym¡X¡X³Ð«Ø©ÎÂà?²Å¸¹¹ï¶H196 5.1.2 syms¡X¡X§Ö³t³Ð«Ø¦hӲŸ¹¹ï¶H197 5.1.3 numden¡X¡X²Å¸¹ªí¹F¦¡ªº¤À¤l©M¤À¥À197 5.1.4 symadd¡X¡X²Å¸¹ªí¹F¦¡¨D©M198 5.1.5 symsub¡X¡X²Å¸¹ªí¹F¦¡¨D®t198 5.1.6 symmul¡X¡X²Å¸¹ªí¹F¦¡¨D¿n198 5.1.7 symdiv¡X¡X²Å¸¹ªí¹F¦¡¨D°Ó199 5.1.8 sympow¡X¡X²Å¸¹ªí¹F¦¡¨D?199 5.1.9 compose¡X¡X²Å¸¹´_¦X¨ç¼Æ¹Bºâ199 5.1.10 finverse¡X¡X²Å¸¹¨ç¼Æªº°f¨ç¼Æ200 5.1.11 symsum¡X¡X¹ï²Å¸¹ªí¹F¦¡¨D©M201 5.1.12 findsym¡X¡X§ä¥X²Å¸¹ªí¹F¦¡©Î¯x°}¤¤ªºÅܶq201 5.2 ²Å¸¹»P¼ÆÈ¶¡ªºÂà?¥H¤Î²Å¸¹ªº¥iÅܺë«×pºâ202 5.2.1 numneric¡X¡X±N²Å¸¹ªí¹F¦¡Âà¤Æ¬°¼ÆÈªí¹F¦¡202 5.2.2 eval¡X¡X±N²Å¸¹ªí¹F¦¡Âà¤Æ¬°¼ÆÈªí¹F¦¡202 5.2.3 sym2poly¡X¡X±N²Å¸¹¦h¶µ¦¡Âà?¦¨¼ÆÈ¦h¶µ¦¡202 5.2.4 poly2sym¡X¡X±N¦h¶µ¦¡¨t¼Æ¦V¶qÂà¤Æ¬°±a²Å¸¹Åܶqªº¦h¶µ¦¡203 5.2.5 digits¡X¡X¬d¬Ý¤Î³]¸m·í«e¨t²Îºâ³N¹Bºâºë«×203 5.2.6 vpa¡X¡X¥iÅܺë«×ºâªkpºâ204 5.3 ²Å¸¹ªí¹F¦¡ªº¤ÆÂ²204 5.3.1 pretty¡X¡X¬ü¤Æ²Å¸¹ªí¹F¦¡204 5.3.2 collect¡X¡X¦X¦}¦PÃþ¶µ¨ç¼Æ205 5.3.3 horner¡X¡Xªí¹F´O®M§Î¦¡ªº¦h¶µ¦¡205 5.3.4 factor¡X¡X²Å¸¹ªí¹F¦¡¯x°}¤À¸Ñ205 5.3.5 expand¡X¡X®i¶}²Å¸¹¯x°}206 5.3.6 simple¡þsimplify¡X¡X²Å¸¹Â²¤Æ206 5.3.7 subs¡X¡X´À?²Å¸¹ªí¹F¦¡¤¤ªºÅܶq207 5.3.8 subexpr¡X¡X´À?²Å¸¹ªí¹F¦¡¤¤«´_ªº¦r²Å¦ê207 5.4 ²Å¸¹¯x°}208 5.4.1 transpose¡X¡X²Å¸¹¯x°}ªºÂà¸m208 5.4.2 det¡X¡X²Å¸¹¯x°}ªº¦æ¦C¦¡208 5.4.3 inv¡X¡X¨D²Å¸¹¯x°}ªº°f°}208 5.4.4 rank¡X¡X²Å¸¹¯x°}¨D¯´209 5.4.5 eig¡X¡X¨D²Å¸¹¯x°}ªº¯S©ºÈ209 5.4.6 jordan¡X¡X¨D¯x°}ªºjordan¼Ð㫬209 5.5 ²Å¸¹·L¿n¤À210 5.5.1 limit¡X¡X¨D²Å¸¹ªí¹F¦¡ªº·¥210 5.5.2 diff¡X¡X¹ï²Å¸¹ªí¹F¦¡¶i¦æ·L¤À211 5.5.3 jacobin¡X¡X¨D·L¤Àjacobin¯x°}211 5.5.4 int¡X¡X¹ï²Å¸¹ªí¹F¦¡¶i¦æ¿n¤À212 5.5.5 rsums¡X¡X¥æ¤¬ªñ¦ü¿n¤À212 5.6 ²Å¸¹¨ç¼Æµe¹Ï213 5.6.1 ezplot¡X¡Xø¨î²Å¸¹¨ç¼Æ¹Ï213 5.6.2 ezplot3¡X¡Xø¨î²Å¸¹¨ç¼Æªº¤Tºû¹Ï§Î214 5.6.3 ezpolar¡X¡Xø¨î²Å¸¹¨ç¼Æªº·¥§¤¼Ð¹Ï§Î215 5.6.4 ezsurf¡X¡Xø¨î²Å¸¹¨ç¼Æªº¤Tºû±m¦â¦±±¹Ï§Î216 5.6.5 ezsurfc¡X¡Xø¨î²Å¸¹¨ç¼Æ¦±±»Pµ¥°ª?µ²¦Xªº¹Ï§Î216 5.6.6 ezmesh¡X¡Xø¨î²Å¸¹¨ç¼Æªº¤Tºûºô®æ¹Ï§Î217 5.6.7 ezmeshc¡X¡Xø¨î²Å¸¹¨ç¼Æªººô®æ»Pµ¥°ª?µ²¦Xªº¹Ï§Î218 5.6.8 ezcontour¡X¡Xø¨î²Å¸¹¨ç¼Æªºµ¥°ª?¹Ï219 5.6.9 ezcontourf¡X¡X¥Î¤£¦P?¦â¶ñ¥R²Å¸¹¨ç¼Æªºµ¥°ª?¹Ï220 5.6.10 latex¡X¡Xlatex§Î¦¡ªº²Å¸¹ªí¹F¦¡221 5.7 ²Å¸¹¤èµ{ªº¨D¸Ñ221 5.7.1 solve¡X¡X¥N¼Æ¤èµ{¡]²Õ¡^ªº²Å¸¹¸ÑªR¸Ñ221 5.7.2 dsolve¡X¡X¨D¸Ñ±`·L¤À¤èµ{222 5.8 ²Å¸¹¿n¤ÀÅÜ?222 5.8.1 fourier¡X¡XfourierÅÜ?222 5.8.2 ifourier¡X¡Xfourier¤ÏÅÜ?223 5.8.3 laplace¡X¡XlaplaceÅÜ?223 5.8.4 ilaplace¡X¡X°flaplaceÅÜ?224 5.8.5 ztrans¡X¡XzÅÜ?224 5.8.6 iztrans¡X¡X°fzÅÜ?224 5.9 §Q¥Îmaple¤Î¨ä¥L¥~³¡¸ê·½225 5.9.1 maple¡X¡X½Õ¥Îmaple?®Ö225 5.9.2 mfun¡X¡Xmaple¼Æ¾Ç¨ç¼Æªº¼ÆÈpºâ226 5.9.3 mhelp¡X¡Xmaple¨ç¼ÆÀ°§U226 5.9.4 ccode¡X¡X²Å¸¹ªí¹F¦¡ªºc»y¨¥¥N½X227 5.9.5 fortran¡X¡X²Å¸¹ªí¹F¦¡ªºfortran»y¨¥¥N½X227 ²Ä6³¹ ·§²v²Îp228 6.1 °Ñ¼Æ¦ôp228 6.1.1 betafit¡X¡X£]¤À¥¬¼Æ¾Úªº°Ñ¼Æ¦ôp©M¸m«H°Ï¶¡228 6.1.2 betalike¡X¡Xt£]¤À¥¬¹ï¼Æ¦üµM¨ç¼Æ229 6.1.3 expfit¡X¡X«ü¼Æ¤À¥¬¼Æ¾Ú°Ñ¼Æ¦ôp©M¸m«H°Ï¶¡229 6.1.4 explike¡X¡Xt«ü¼Æ¤À¥¬¹ï¼Æ¦üµM¨ç¼Æ230 6.1.5 gamfit¡X¡X¦÷°¨¤À¥¬¼Æ¾Úªº°Ñ¼Æ¦ôp©M¸m«H°Ï¶¡230 6.1.6 gamlike¡X¡Xt¦÷°¨¤À¥¬¹ï¼Æ¦üµM¨ç¼Æ231 6.1.7 normfit¡X¡X¥¿ºA¤À¥¬¼Æ¾Ú°Ñ¼Æ¦ôp©M¸m«H°Ï¶¡231 6.1.8 normlike¡X¡Xt¥¿ºA¤À¥¬¹ï¼Æ¦üµM¨ç¼Æ232 6.1.9 poissfit¡X¡XªyªQ¼Æ¾Ú°Ñ¼Æ¦ôp©M¸m«H°Ï¶¡232 6.1.10 unifit¡X¡X§¡?¤À¥¬¼Æ¾Ú°Ñ¼Æ¦ôp233 6.1.11 wblfit¡X¡Xweibull¡]«Â¥¬º¸¡^¤À¥¬¼Æ¾Ú°Ñ¼Æ¦ôp©M¸m«H°Ï¶¡234 6.1.12 wbllike¡X¡Xtweibull¤À¥¬¹ï¼Æ¦üµM¨ç¼Æ234 6.1.13 binofit¡X¡X¤G¶µ¤À¥¬¼Æ¾Ú°Ñ¼Æ¦ôp©M¸m«H°Ï¶¡235 6.1.14 mle¡X¡X«ü©w¤À¥¬°Ñ¼Æªº³Ì¤j¦üµM¦ôp236 6.2 ²Ö¿n¤À¥¬©M°f²Ö¿n¤À¥¬¨ç¼Æ237 6.2.1 betacdf¡X¡X£]¤À¥¬²Ö¿n¤À¥¬¨ç¼Æ237 6.2.2 ¨ä¥L¤À¥¬²Ö¿n¤À¥¬¨ç¼Æ237 6.2.3 betainv¡X¡X£]¤À¥¬°f²Ö¿n¤À¥¬¨ç¼Æ239 6.2.4 ¨ä¥L¤À¥¬°f²Ö¿n¤À¥¬¨ç¼Æ239 6.2.5 cdf¡X¡X«ü©w¤À¥¬ªº²Ö¿n¤À¥¬¨ç¼Æ240 6.2.6 icdf¡X¡X«ü©w¤À¥¬ªº°f²Ö¿n¤À¥¬¨ç¼Æ241 6.3 ·§²v±K«×¨ç¼Æ241 6.3.1 betapdf¡X¡X£]¤À¥¬·§²v±K«×¨ç¼Æ241 6.3.2 ¨ä¥L¤À¥¬·§²v±K«×¨ç¼Æ242 6.3.3 pdf¡X¡Xpºâ«ü©w¤À¥¬ªº·§²v±K«×¨ç¼Æ243 6.4 ÀH¾÷¼Æ¥Í¦¨244 6.4.1 betarnd¡X¡X¥Í¦¨£]¤À¥¬ÀH¾÷¼Æ244 6.4.2 nctrnd¡X¡X¥Í¦¨°¾t¤À¥¬ÀH¾÷¼Æ¨ç¼Æ245 6.4.3 binornd¡X¡X¥Í¦¨¤G¶µ¤À¥¬ÀH¾÷¼Æ245 6.4.4 normrnd¡X¡X¥Í¦¨¥¿ºA¤À¥¬ÀH¾÷¼Æ¨ç¼Æ245 6.4.5 chi2rnd¡X¡X¥Í¦¨¥d¤è¤À¥¬ÀH¾÷¼Æ¨ç¼Æ245 6.4.6 poissrnd¡X¡X¥Í¦¨ªyªQ¤À¥¬ªº¤À¥¬ÀH¾÷¼Æ¨ç¼Æ246 6.4.7 exprnd¡X¡X¥Í¦¨«ü¼Æ¤À¥¬ÀH¾÷¼Æ¨ç¼Æ247 6.4.8 raylrnd¡X¡X¥Í¦¨rayleigh¡]·ç§Q¡^¤À¥¬ÀH¾÷¼Æ¨ç¼Æ247 6.4.9 frnd¡X¡X¥Í¦¨f¤À¥¬ÀH¾÷¼Æ¨ç¼Æ247 6.4.10 nbinrnd¡X¡X¥Í¦¨t¤G¶µ¤À¥¬ÀH¾÷¼Æ¨ç¼Æ247 6.4.11 gamrnd¡X¡X¥Í¦¨¦÷°¨¤À¥¬ÀH¾÷¼Æ¨ç¼Æ248 6.4.12 lognrnd¡X¡X¥Í¦¨¹ï¼Æ¥¿ºA¤À¥¬ÀH¾÷¼Æ¨ç¼Æ248 6.4.13 geornd¡X¡X¥Í¦¨´X¦ó¤À¥¬ÀH¾÷¼Æ¨ç¼Æ248 6.4.14 hygernd¡X¡X¥Í¦¨¶W´X¦ó¤À¥¬ÀH¾÷¼Æ¨ç¼Æ248 6.4.15 ncx2rnd¡X¡X¥Í¦¨°¾¥d¤è¤À¥¬ÀH¾÷¼Æ¨ç¼Æ249 6.4.16 ncfrnd¡X¡X¥Í¦¨°¾f¤À¥¬ÀH¾÷¼Æ¨ç¼Æ249 6.4.17 trnd¡X¡X¥Í¦¨t¤À¥¬ÀH¾÷¼Æ¨ç¼Æ249 6.4.18 unidrnd¡X¡X¥Í¦¨Â÷´²§¡?¤À¥¬¤À¥¬ÀH¾÷¼Æ¨ç¼Æ249 6.4.19 unifrnd¡X¡X¥Í¦¨³sÄò§¡?¤À¥¬ÀH¾÷¼Æ¨ç¼Æ250 6.4.20 wblrnd¡X¡X¥Í¦¨weibull¤À¥¬ÀH¾÷¼Æ¨ç¼Æ250 6.4.21 random¡X¡X¥Í¦¨«ü©w¤À¥¬ÀH¾÷¼Æ¨ç¼Æ250 6.5 §¡È»P¤è®t251 6.5.1 betastat¡X¡Xpºâ£]¤À¥¬ªº§¡È©M¤è®t¨ç¼Æ251 6.5.2 ±`¥Î¤À¥¬ªº§¡È»P¤è®t¨ç¼Æ252 6.6 ²Îp¯S©º¨ç¼Æ253 6.6.1 corrcoef¡X¡X¬ÛÃö¨t¼Æ253 6.6.2 cov¡X¡X¨ó¤è®t¯x°}254 6.6.3 kurtosis¡X¡X®p«×254 6.6.4 skewness¡X¡X°¾«×254 6.6.5 iqr¡X¡X?¥|¤À·¥È255 6.6.6 geomean¡X¡X´X¦ó¥§¡¼Æ255 6.6.7 harmmean¡X¡X½Õ©M§¡È256 6.6.8 mean¡X¡Xºâ³N¥§¡¼Æ256 6.6.9 trimmean¡X¡XºI§À§¡È256 6.6.10 median¡X¡X¤¤È257 6.6.11 mad¡X¡X¥§¡?¹ï°¾®t257 6.6.12 moment¡X¡X«ü©w¶¥¤¤¤ß¯x258 6.6.13 var¡X¡X¤è®t258 6.6.14 std¡X¡X¼Ðã®t258 6.6.15 nanmax¡X¡X©¿²¤nanªº³Ì¤jÈ259 6.6.16 nanmin¡X¡X©¿²¤nanªº³Ì¤pÈ259 6.6.17 nanmean¡X¡X©¿²¤nanªº¥§¡¼Æ260 6.6.18 nanmedian¡X¡X©¿²¤nanªº¤¤È260 6.6.19 nanstd¡X¡X©¿²¤nanªº¼Ðã®t260 6.6.20 nansum¡X¡X©¿²¤nanªºÁ`©M261 6.6.21 range¡X¡X·¥®t261 6.6.22 prctile¡X¡X¦Ê¤À¦ì¼Æ261 6.7 °²³]ÀËÅç262 6.7.1 ranksum¡X¡X¯´©MÀËÅç262 6.7.2 signrank¡X¡X²Å¸¹¯´ÀËÅç263 6.7.3 signtest¡X¡X²Å¸¹ÀËÅç264 6.7.4 ttest¡X¡X?¥»§¡ÈªºtÀËÅç265 6.7.5 ttest2¡X¡X¨âÓ?¥»§¡ÈªºtÀËÅç265 6.7.6 ztest¡X¡XzÀËÅç267 6.7.7 jbtest¡X¡X¥¿ºA¤À¥¬ªºÀÀ¦XÀu«×´ú¸Õ268 6.7.8 kstest2¡X¡XÂù?¥»ªºkolmogorov-smirnovÀËÅç268 6.8 ?©Ê»P«D?©Ê¦^Âk¼Ò«¬269 6.8.1 anova1¡X¡X³æ¦]¯À¤è®t¤ÀªR269 6.8.2 anova2¡X¡XÂù¦]¯À¤è®t¤ÀªR271 6.8.3 polyconf¡X¡X¦h¶µ¦¡¹w´ú©M¸m«H°Ï¶¡µû¦ô272 6.8.4 polyfit¡X¡X¦h¶µ¦¡¦±?ÀÀ¦X272 6.8.5 polyvalt¡X¡X¦h¶µ¦¡µû¦ô272 6.8.6 regress¡X¡X¦h«?©Ê¦^Âk273 6.8.7 nlinfit¡X¡X«D?©Ê³Ì¤p¤G¼ÀÀ¦X274 6.8.8 nlintool¡X¡X«D?©Ê¤èµ{ÀÀ¦X276 6.8.9 nlparci¡X¡X«D?©Ê¼Ò«¬¤¤°Ñ¼Æ¦ôpȪº¸m«H°Ï¶¡ 277 6.9 ²Îp§@¹Ï278 6.9.1 boxplot¡X¡X?¥»¼Æ¾Ú²°¤l¹Ï278 6.9.2 errorbar¡X¡Xø¨î»~®t±ø¹Ï279 6.9.3 gline¡X¡Xø¨î¥æ¤¬?280 6.9.4 lsline¡X¡Xø¨î¼Æ¾Úªº³Ì¤p¤G¼ÀÀ¦X?281 6.9.5 normplot¡X¡Xø¨î¥¿ºA¤À¥¬ªº·§²v¹Ï281 6.9.6 pareto¡X¡Xø¨î©¬²Ö¦«¹Ï282 6.9.7 qqplot¡X¡Xø¨î¨âÓ?¥»ªº¤À¦ì¼Æ¹Ï283 6.9.8 rcoplot¡X¡Xø¨î¦^Âk´Ý®t¹Ï284 6.9.9 refcurve¡X¡X¦b·í«e¹Ï§Î¤¤Ã¸¨î¦h¶µ¦¡ÀÀ¦X¦±?284 6.9.10 refline¡X¡X¦b·í«e¹Ï§Î¤¤µ¹¥X°Ñ¦Ò?285 6.9.11 wblplot¡X¡Xø¨î«Â¥¬º¸¤À¥¬·§²v¹Ï286 6.9.12 capaplot¡X¡Xø¨î¤u§Ç¯à¤O¹Ï287 6.9.13 histfit¡X¡Xªþ±a¥¿ºA±K«×¦±?ªºª½¤è¹Ï287 6.9.14 normspec¡X¡Xø¨î«ü©w°Ï¶¡ªº¥¿ºA¤À¥¬±K«×¦±?288 ²Ä7³¹ simulink¥é¯u290 7.1 «Ø¼Ò©R¥O290 7.1.1 simulink¡X¡X?°Êsimulink¼Ò¶ô290 7.1.2 find_system¡X¡X¬d§ä«ü©wªº¥é¯u¨t²Î291 7.1.3 load_system¡X¡X¥[¸ü«ü©wªº¥é¯u¨t²Î292 7.1.4 open_system¡X¡X¥´¶}«ü©wªº¥é¯u¨t²Î293 7.1.5 new_system¡X¡X«Ø¥ß·sªºsimulink¨t²Î¼Ò«¬293 7.1.6 close_system¡X¡XÃö³¬simulink¨t²Î¼Ò«¬293 7.1.7 bdclose¡X¡XÃö³¬·í«e¥é¯u¨t²Î¼Ò«¬294 7.1.8 save_ system¡X¡X«O¦ssimulink¨t²Î¼Ò«¬294 7.1.9 add_block¡X¡X²K¥[«ü©w¼Ò¶ô294 7.1.10 delete_ block¡X¡X?°£«ü©w¼Ò¶ô294 7.1.11 replace_ block¡X¡X´À¥N«ü©w¼Ò¶ô295 7.1.12 add_line¡X¡X¦b¨t²Î¤¤²K¥[«ü©w³s?296 7.1.13 delete_line¡X¡X?°£«ü©w³s?297 7.1.14 get_param¡X¡XÀò¨ú¨t²Î¼Ò«¬ªº°Ñ¼Æ298 7.1.15 set_param¡X¡X³]¸m¨t²Î¼Ò«¬ªº°Ñ¼Æ298 7.1.16 gcb¡X¡XÀò±o·í«e¼Ò¶ôªº¸ô®|¦W299 7.1.17 gcs¡X¡XÀò±o·í«e¨t²Îªº¸ô®|¦W299 7.1.18 gcbh/getfullname¡X¡XÀò¨ú·í«e¼Ò¶ôªº¾Þ§@¥y¬`300 7.1.19 bdroot¡X¡XÀò±o³Ì¤W¼h¨t²Î¼Ò«¬¦WºÙ300 7.1.20 slupdate¡X¡X§ó·s¨t²Î¼Ò¶ô300 7.1.21 slhelp¡X¡X¬d¬ÝÀ°§U«H®§301 7.2 ¥é¯u©R¥O.302 7.2.1 sim¡X¡X°ÊºA¨t²Î¥é¯u302 7.2.2 simget¡X¡XÀò¨ú¥é¯u¨t²Î«H®§303 7.2.3 simset¡X¡X³]¸m¨t²Î¥é¯u°Ñ¼ÆÈ304 7.2.4 simplot¡X¡Xø¨îscope¼Ò¶ô¿é¥Xªº¹Ï§Î305 7.2.5 linmod¡X¡X¼Ò«¬?©Ê¤Æ306 7.2.6 trim¡X¡X¨D¸Ñ¨t²Î¥¿ÅÂI307 ²Ä8³¹ ¹Ï§Î¥Î?¬É±gui308 8.1 ¹w©w¸q¹ï¸Ü®Ø308 8.1.1 dialog¡X¡X³Ð«Ø¦}Åã¥Ü¹ï¸Ü®Ø308 8.1.2 errordlg¡X¡X³Ð«Ø´£¥Ü¿ù»~¹ï¸Ü®Ø309 8.1.3 helpdlg¡X¡X³Ð«ØÀ°§U¹ï¸Ü®Ø310 8.1.4 inputdlg¡X¡X³Ð«Ø¿é¤J¹ï¸Ü®Ø311 8.1.5 listdlg¡X¡X³Ð«Ø¿ï¾Ü¦Cªí?®eªº¹ï¸Ü®Ø312 8.1.6 msgbox¡X¡X³Ð«Ø®ø®§¹ï¸Ü®Ø313 8.1.7 pagesetupdlg¡X¡X³Ð«Ø¶±³]¸m¹ï¸Ü®Ø314 8.1.8 printdlg¡X¡X³Ð«ØÅã¥Ü¥´¦L¹ï¸Ü®Ø315 8.1.9 questdlg¡X¡X³Ð«Ø°ÝÃD¹ï¸Ü®Ø315 8.1.10 uigetdir¡X¡X³Ð«Ø¿ï©w¥Ø?ªº¼Ðã¹ï¸Ü®Ø316 8.1.11 uigetfile¡X¡X¥æ¤¬¦¡¾Þ§@¨ú±o¤å¥ó¦W317 8.1.12 uiputfile¡X¡X«O¦s¤å¥óªº¼Ðã¹ï¸Ü®Ø318 8.1.13 uisetcolor¡X¡X¥´¶}?¦â¿ï¾Ü¹ï¸Ü®Ø319 8.1.14 uisetfont¡X¡X¥æ¤¬¦¡×§ï¹ï¶Hªº¦rÅé¯S©º320 8.1.15 waitbar¡X¡XÅã¥Üµ¥«Ý¹ï¸Ü®Ø323 8.1.16 warndlg¡X¡X³Ð«ØÄµ§i¹ï¸Ü®Ø323 8.2 °t¸m¤Î¶}µo¥Î?¬É±324 8.2.1 menu¡X¡X¥Í¦¨µæ³æ324 8.2.2 uicontextmenu¡X¡X³Ð«Ø¤W¤U¤åµæ³æ325 8.2.3 uimenu¡X¡X¥Í¦¨¹Ï§Îµ¡¤f¤¤ªº¤U¤@¯Å¤lµæ³æ326 8.2.4 uicontrol¡X¡X³Ð«Ø¥Î?¬É±±±¥ó¹ï¶H328 8.2.5 guide¡X¡X?°Êguiª©±½s¿è¾¹330 8.2.6 inspect¡X¡XÅã¥ÜÄÝ©ÊÀˬd¾¹331 8.2.7 getappdata¡X¡XÀò¨úÀ³¥Îµ{§Ç©w¸qªº¼Æ¾ÚÈ332 8.2.8 setappdata¡X¡X³]©wÀ³¥Îµ{§Ç©w¸qªº¼Æ¾ÚÈ332 8.2.9 ginput¡X¡X¨Ó¦Û¹«¼Ð©Î«ü°wªº¼Æ¾Ú¿é¤J333 8.2.10 guihandles¡X¡X³Ð«Ø¥y¬`ªº¤@Óµ²ºc334 8.2.11 guidata¡X¡X¦sÀx©Î«·sÀò¨úÀ³¥Î¼Æ¾Ú334 8.3 ¨ä¥L¹ê¥Î¨ç¼Æ335 8.3.1 gcf/gca/gco¡X¡Xªð¦^·í«e¹Ï§Î/§¤¼Ð¶b/¹ï¶Hªº¥y¬`335 8.3.2 get¡X¡XÀò±o¹ï¶HÄÝ©Ê335 8.3.3 set¡X¡X³]¸m¹ï¶HÄÝ©Ê336 8.3.4 findall¡X¡X¬d§ä©Ò¦³¹Ï§Î¹ï¶H337 8.3.5 gcbf¡X¡XÀò±o·í«e°õ¦æµ{§Çªº¹Ï§Î¹ï¶Hªº¤÷¹ï¶Hªº¥y¬`338 8.3.6 gcbo¡X¡XÀò±o·í«e°õ¦æµ{§Çªº¹Ï§Î¹ï¶Hªº¥y¬`338 8.3.7 dragrect¡X¡X¹«¼Ð©ì°Êªø¤è§Î338 8.3.8 selectmoveresize¡X¡X¾Þ§@¶b¹Ï§Î¹ï¶H©M¥Î?¬É±±±¨î¹Ï§Î¹ï¶H339 8.3.9 uiresume¡X¡X«ì´_µ{§Ç°õ¦æ340 8.3.10 uiwait¡X¡X°±¤îµ{§Ç°õ¦æ341 8.3.11 waitforbuttonpress¡X¡Xµ¥«Ý«öÁä©Î¹«¼Ð«ö¤U341 ²Ä9³¹ ¤pªiÅÜ?343 9.1 ¤@ºû¤pªi³sÄò©MÂ÷´²ÅÜ?343 9.1.1 cwt¡X¡X¤@ºû¤pªi³sÄòÅÜ?343 9.1.2 pat2cwav¡X¡X±q¤@Óì©l¹Ï?¤¤ºc«Ø¤@Ó¤pªi¨ç¼Æ345 9.1.3 dwt¡X¡X³æ¤Ø«×¤@ºû¤pªiÂ÷´²ÅÜ?346 9.1.4 dwtmode¡X¡XÂ÷´²¤pªiÅÜ?©Ý®i¼Ò¦¡347 9.1.5 idwt¡X¡X³æ¤Ø«×¤@ºûÂ÷´²¤pªi°fÅÜ?348 9.1.6 wavedec¡X¡X¦h¤Ø«×¤@ºû¤pªi¤À¸Ñ349 9.1.7 appcoef¡X¡X´£¨ú¤@ºû¤pªiÅÜ?§CÀW¨t¼Æ350 9.1.8 detcoef¡X¡X´£¨ú¤@ºû¤pªiÅÜ?°ªÀW¨t¼Æ351 9.1.9 waverec¡X¡X¦h¤Ø«×¤@ºû¤pªi«ºc352 9.1.10 upwlev¡X¡X³æ¤Ø«×¤@ºû¤pªi¤À¸Ñªº«ºc353 9.1.11 wrcoef¡X¡X¤@ºû¤pªi¨t¼Æªº³æ¤ä«ºc354 9.1.12 upcoef¡X¡X¤@ºû¨t¼Æªºª½±µ¤pªi«ºc355 9.2 ¤GºûÂ÷´²¤pªiÅÜ?356 9.2.1 dwt2¡X¡X³æ¤Ø«×¤GºûÂ÷´²¤pªiÅÜ?356 9.2.2 idwt2¡X¡X³æ¤Ø«×°f¤GºûÂ÷´²¤pªiÅÜ?357 9.2.3 wavedec2¡X¡X¦h¤Ø«×¤Gºû¤pªi¤À¸Ñ358 9.2.4 waverec2¡X¡X¦h¤Ø«×¤Gºû¤pªi«ºc359 9.2.5 appcoef2¡X¡X´£¨ú¤Gºû¤pªi¤À¸Ñ§CÀW¨t¼Æ360 9.2.6 detcoef2¡X¡X´£¨ú¤Gºû¤pªi¤À¸Ñ°ªÀW¨t¼Æ361 9.2.7 upwlev2¡X¡X¤Gºû¤pªi¤À¸Ñªº³æ¤Ø«×«ºc362 9.2.8 wrcoef2¡X¡X¤Gºû¤pªi¨t¼Æªº³æ¤ä«ºc362 9.2.9 upcoef2¡X¡X¤Gºû¤pªi¤À¸Ñªºª½±µ«ºc363 9.3 ¤pªi¥]ÅÜ?.364 9.3.1 wpdec¡X¡X¤@ºû¤pªi¥]¤À¸Ñ364 9.3.2 wprec¡X¡X¤@ºû¤pªi¥]¤À¸Ñªº«ºc365 9.3.3 wpdec2¡X¡X¤Gºû¤pªi¥]¤À¸Ñ366 9.3.4 wprec2¡X¡X¤Gºû¤pªi¥]¤À¸Ñªº«ºc367 9.3.5 wpcoef¡X¡Xpºâ¤pªi¥]¨t¼Æ367 9.3.6 wprcoef¡X¡X¤pªi¥]¤À¸Ñ¨t¼Æªº«ºc369 9.3.7 wpsplt¡X¡X¤À³Î¡]¤À¸Ñ¡^¤pªi¥]369 9.3.8 wpjoin¡X¡X«·s²Õ¦X¤pªi¥]370 9.3.9 wpcutree¡X¡X°Å¤Á¤pªi¥]¤À¸Ñ¾ð371 9.3.10 besttree¡X¡Xpºâ³Ì¨Î¡]Àu¡^¾ð372 9.3.11 bestlevt¡X¡Xpºâ§¹¾ã³Ì¨Î¤pªi¥]373 9.3.12 wp2wtree¡X¡X±q¤pªi¥]¾ð¤¤´£¨ú¤pªi¾ð375 ²Ä10³¹ ¯«¸gºôµ¸376 10.1 bp¯«¸gºôµ¸376 10.1.1 newff¡X¡X«Ø¥ß«e¦Vbpºôµ¸376 10.1.2 newcf¡X¡X«Ø¥ß¯ÅÁp«e¦Vbpºôµ¸378 10.1.3 newfftd¡X¡X«Ø¥ß¦s¦b¿é¤J©µ¿ðªº«e¦Vºôµ¸379 10.1.4 tansig¡X¡Xs«¬Âù¦±¥¿¤Á¶Ç»¼¨ç¼Æ379 10.1.5 logsig¡X¡Xs«¬¹ï¼Æ¶Ç»¼¨ç¼Æ381 10.1.6 purelin¡X¡X¯Â?©Ê¶Ç»¼¨ç¼Æ381 10.1.7 learngd¡X¡X±è«×¤U°ÅvÈ/ìHÈ¾Ç²ß¨ç¼Æ382 10.1.8 learngdm¡X¡X±è«×¤U°°Ê¶qÅvÈ/ìHÈ¾Ç²ß¨ç¼Æ383 10.1.9 traingd¡X¡X±è«×¤U°ªkªº¤Ï¦V¶Ç¼½°V½m¨ç¼Æ383 10.1.10 traingdm¡X¡X±è«×¤U°°Ê¶qbp°V½m¨ç¼Æ384 10.2 rbf¯«¸gºôµ¸.384 10.2.1 newrb¡X¡X«Ø¥ß¤@Órbfºôµ¸384 10.2.2 newrbe¡X¡X«Ø¥ß¤@ÓÄY®æªºrbfºôµ¸385 10.2.3 newgrnn¡X¡X«Ø¥ß¤@Ó¼s¸q¦^Âkrbfºôµ¸386 10.2.4 newpnn¡X¡X«Ø¥ß¤@Ó·§²vrbfºôµ¸386 10.2.5 radbas¡X¡X®|¦V°ò¶Ç»¼¨ç¼Æ386 10.2.6 ind2vec¡X¡X±N¼Æ¾Ú¯Á¤ÞÂà?¬°µ}²¨¯x°}387 10.2.7 vec2ind¡X¡X±Nµ}²¨¯x°}Âà?¬°¼Æ¾Ú¯Á¤Þ387 10.3 ¦Û²Õ´»Plvq¯«¸gºôµ¸388 10.3.1 newc¡X¡X³Ð«Ø¤@ÓÄv?¼h388 10.3.2 newsom¡X¡X³Ð«Ø¦Û²Õ´¯S©º¬M®gºôµ¸389 10.3.3 newlvq¡X¡X³Ð«Ø¾Ç²ß¦V¶q¶q¤Ælvqºôµ¸390 10.3.4 compet¡X¡XÄv?©Ê¶Ç»¼¨ç¼Æ391 10.3.5 softmax¡X¡X¬X©Ê³Ì¤j¶Ç»¼¨ç¼Æ392 10.3.6 learnsom¡X¡X¦Û²Õ´¬M®gÅvÈ¾Ç²ß¨ç¼Æ392 10.3.7 learnlv1¡X¡Xlvq1ÅvÈ¾Ç²ß¨ç¼Æ393 10.3.8 learnk¡X¡XkohonenÅvÈ¾Ç²ß¨ç¼Æ393 10.4 elmanºôµ¸393 10.4.1 newelm¡X¡X¥Í¦¨elman¯«¸gºôµ¸393 10.4.2 traingd¡X¡X®Ú¾Ú¤w³]©wªºÅvÈ/ìHȶ¶§Ç°V½mºôµ¸¨ç¼Æ394 10.4.3 traingdx¡X¡X¦Û¾AÀ³¾Ç²ß³t²v°Ê¶q±è«×¤U°¤Ï¦V¶Ç¼½°V½m¨ç¼Æ394 10.5 hopfieldºôµ¸395 10.5.1 newhop¡X¡X¥Í¦¨hopfield¤Ï¦V¯«¸gºôµ¸395 10.5.2 satlin¡X¡X¹¡©M?©Ê¶Ç»¼¨ç¼Æ396 10.5.3 satlins¡X¡X¹ïºÙ¹¡©M?©Ê¶Ç»¼¨ç¼Æ397 10.6 ºôµ¸³q¥Î¨ç¼Æ.397 10.6.1 adapt¡X¡X¦Û¾AÀ³¨ç¼Æ398 10.6.2 init¡X¡X¹ïºôµ¸ªì©l¤Æ398 10.6.3 sim¡X¡X¯«¸gºôµ¸¥é¯u¨ç¼Æ398 10.6.4 train¡X¡X¯«¸gºôµ¸°V½m¨ç¼Æ398 10.6.5 learnp¡X¡X¯«¸gºôµ¸¾Ç²ß¨ç¼Æ399 ²Ä11³¹ ¿ò¶Çºâªk400 11.1 bs2rv¡X¡X¤G¶i¨î¨ì¹êȪºÂà?400 11.2 crtbase¡X¡X³Ð«Ø°ò¦V¶q401 11.3 crtbp¡X¡X³Ð«Øªì©lºØ¸s402 11.4 crtrp¡X¡X³Ð«Ø¹êÈì©lºØ¸s402 11.5 migrate¡X¡X¦b¤lºØ¸s¶¡¾E²¾ÓÅé403 11.6 mut¡X¡XÂ÷´²ÅÜÉݺâ¤l403 11.7 mutbga¡X¡X¹êȺظsªºÅÜÉÝ404 11.8 mutate¡X¡XÓÅéÅÜÉÝ405 11.9 ranking¡X¡X°ò¤_±Æ§Çªº¾AÀ³«×¤À°t406 11.10 recdis¡X¡XÂ÷´²«²Õ407 11.11 recint¡X¡X¤¤¶¡«²Õ407 11.12 reclin¡X¡X?©Ê«²Õ408 11.13 recmut¡X¡X¨ã¦³¬ðÅܯS©ºªº?©Ê«²Õ409 11.14 recombin¡X¡XºØ¸sÓÅ髲Õ410 11.15 reins¡X¡X«´¡¤l¥N410 11.16 rep¡X¡X´_¨î¯x°}411 11.17 scaling¡X¡X?©Ê¾AÀ³«×pºâ411 11.18 rws¡X¡X½ü½L¿ï¾Üºâ¤l412 11.19 sus¡X¡XÀH¾÷¹M¾ú©â?412 11.20 select¡X¡XºØ¸s¤¤ÓÅé¿ï¾Ü413 11.21 xovmp¡X¡X¦hÂI¥æ¤e414 11.22 xovdp¡X¡X¨âÂI¥æ¤e414 11.23 ¨ä¥L¥æ¤e¨ç¼Æ¡X¡Xxovdprs¡Bxovsh¡Bxovshrs¡Bxovsp¡Bxovsprs415 ²Ä12³¹ «H¸¹³B²z416 12.1 «H¸¹ªº?¥Í.416 12.1.1 ones¡X¡X?¥Í³æ¦ì¶¥ÅD«H¸¹416 12.1.2 zeros¡X¡X?¥Í³æ¦ì©â?«H¸¹416 12.1.3 sin/cos¡X¡X¥Í¦¨¥¿©¶/¾l©¶«H¸¹417 12.1.4 sinc¡X¡X¥Í¦¨sinc«H¸¹418 12.1.5 diric¡X¡X¥Í¦¨¤@Ó¨fùاJ¤O«H¸¹418 12.1.6 sawtooth¡X¡X¥Í¦¨¿÷¾¦ªi/¤T¨¤ªi«H¸¹419 12.1.7 chirp¡X¡X¥Í¦¨±½ÀW«H¸¹420 12.1.8 square¡X¡X¥Í¦¨¤èªi«H¸¹421 12.1.9 stem¡X¡X¥Í¦¨¦}ø¨îÂ÷´²«H¸¹422 12.2 «H¸¹®ÉÀW¤ÀªR422 12.2.1 mean¡X¡X¨D«H¸¹§¡È422 12.2.2 std¡X¡X¨D«H¸¹¼Ðã®t423 12.2.3 xcorr¡X¡X¦ôp¬ÛÃö©Ê423 12.2.4 conv¡X¡Xpºâ¨÷¿n424 12.2.5 cov¡X¡Xpºâ¨ó¤è®t425 12.2.6 fft/ ifft¡X¡X§Ö³t³Å¥ß¸ÅÜ?/¤ÏÅÜ?425 12.2.7 hilbert¡X¡X§Æº¸§B¯SÅÜ?426 12.2.8 residuez¡X¡Xz¤ÏÅÜ?427 12.3 Âoªi¾¹ªº¤ÀªR¹ê²{428 12.3.1 abs¡X¡X´TȨD¨ú¨ç¼Æ428 12.3.2 angle¡X¡X¬Û¦ì¨¤¨D¨ú428 12.3.3 freqspace¡X¡X³]¸mÀW²vÅTÀ³ªºÀW²v¶¡¹j429 12.3.4 freqs¡X¡X¼ÒÀÀÂoªi¾¹ªºÀW²vÅTÀ³429 12.3.5 freqz¡X¡X¼Æ¦rÂoªi¾¹ªºÀW²vÅTÀ³430 12.3.6 grpdelay¡X¡XpºâÂoªi¾¹ªº¸s©µ¿ð431 12.3.7 impz¡X¡Xpºâ¼Æ¦rÂoªi¾¹ªº½Ä?ÅTÀ³432 12.3.8 unwrap¡X¡X®i¶}¬Û¦ì¨¤433 12.3.9 filter¡X¡X¤@ºû¼Æ¦rÂoªi¾¹433 12.3.10 filtic¡X¡Xª½±µii«¬¼Æ¦rÂoªi¾¹¹ê²{ªì©l±ø¥ó435 12.3.11 filtfilt¡X¡X¹s¬Û¦ì¼Æ¦rÂoªi435 12.3.12 fftfilt¡X¡X°ò¤_fftªºfirÂoªi436 12.4 Âoªi¾¹ªº³]p436 12.4.1 besself¡X¡X¨©¶ëº¸¼ÒÀÀÂoªi¾¹³]p436 12.4.2 butter¡X¡XbutterworthÂoªi¾¹³]p437 12.4.3 cheby1¡X¡X¤Á¤ñ³·¤Òi«¬Âoªi¾¹³]p438 12.4.4 cheby2¡X¡X¤Á¤ñ³·¤Òii«¬Âoªi¾¹³]p439 12.4.5 ellip¡X¡X¾ò¶ê§ÎÂoªi¾¹³]p440 12.4.6 besselap¡X¡Xbesself§C³q¼ÒÀÀÂoªi¾¹441 12.4.7 buttap¡X¡Xbutterworth§C³q¼ÒÀÀÂoªi¾¹441 12.4.8 cheb1ap¡X¡X¤Á¤ñ³·¤Òi«¬§C³q¼ÒÀÀÂoªi¾¹442 12.4.9 cheb2ap¡X¡X¤Á¤ñ³·¤Òii«¬§C³q¼ÒÀÀÂoªi¾¹442 12.4.10 impinvar¡X¡X¥Î½Ä?ÅTÀ³¤£Åܪk¨Ï¼ÒÀÀÂoªi¾¹Âà?¬°¼Æ¦rÂoªi¾¹443 12.4.11 bilinear¡X¡X¥ÎÂù?§ÎÅÜ?ªk¨Ï¼ÒÀÀÂoªi¾¹Âà?¬°¼Æ¦rÂoªi¾¹444 12.4.12 yulewalk¡X¡X»¼Âk¼Æ¦rÂoªi¾¹³]p444 12.4.13 fir1¡X¡X°ò¤_µ¡¨ç¼ÆªkªºfirÂoªi¾¹³]p445 12.4.14 fir2¡X¡X°ò¤_ÀW²v©â?ªkªºfirÂoªi¾¹³]p446 |
§Ç¡G |